Like Systems Mutual Interference— First Order Analysis

- ◆ PFA: Probability of false alarm due to mutual interference of two like systems
- ◆ Psyn: Probability of synchronization of signal transmission of the two like systems
- ◆ Povlp: Probability of the RF frequencies of the two like systems overlapping each other—depends on manufacturing control
- ◆ Pant: Probability two antennas look at each other
- Since synchronization and RF overlap, and antenna boresighting are caused by independent processes, they are independent. Thus,

PFA = PSYN · POVLP · PANT

Mutual Interference: Synchronization Requirement

Mutual Interference: Probability of Synchronization

- ◆ Waveform is repeated with period of T
- Assuming that the two systems have completely random start-up,

$$P_{SYN} = 2 \cdot \frac{\left(\frac{IFBW}{Slope}\right)}{T}$$

Mutual Interference: RF Overlap Requirement

Mutual Interference:

The Condition for RF Overlap

Mutual Interference: Probability of RF Overlap

 ◆ Assuming that fA and fB are uniformly distributed over the W × W sample space, then

$$Povlp \approx \frac{2 \cdot IFBW}{W}$$
; IFBW << W

Mutual Interference: Probability of Antenna Boresighting

P₁ = Probability antenna #1 looking at antenna #2

P₂ = Probability antenna #2 looking at antenna #1

 P_{DIR} = Probability both antennas moving same direction (CW or CCW) = 0.5

$$P_{ANT} = P_1 \cdot P_2 \cdot P_{DIR}$$

For our system, $P_1 = P_2 = 0.1$ for straight road, adjacent opposing lanes (worst case)

$$P_{ANT} = (0.1)(0.1)(0.5) = .005$$

Mutual Interference: False Alarm Rate

- ◆ For an automobile equipped with the GMHE radar, P_{FA} is the probability that a similar system will cause it to generate a false alarm
- Suppose one encounters n such (similar) systems every second
- ◆ PFAPH: The probability that at least one false alarm is generated over a period of one hour is

$$P_{FAPH} = 1 - (1 - P_{FA})^{3600 \, N}$$

◆ For small Pfaph, the false alarm rate (FAR), i.e., one false alarm per FAR hours:

$$FAR = \frac{1}{P_{FAPH}}$$

Mutual Interference: Calculated FAR Estimates Are Very Conservative

- Assumes antennas of interfering radars are looking directly at each other and this occurs once per second
 - Should not happen on divided highways
 - Could happen on roads with adjacent opposing lanes and no barrier
- "Target Selection" algorithm will eliminate alarms for targets not in path of radar car
- Assumes FM slopes are identical for every unit; not true due to manufacturing tolerances; differences in actual slopes significantly reduce probability of frequency overlap

Technical Appendix B

Forward-Looking Radar Design Considerations

Narrow Beam+FOV Approach Detects a ranget weateleain the Same and

But a narrow beam will miss near range cut-ins

Wide Beam FOV Approach Detects Near Range Cut-ins

trom adjacent lane vehicles But a wide beam can also cause false alarms

A Compromise System with a Medium FOV Beam Has Limitations

- ◆ Adjacent lane vehicles detected beyond 50 meters
- Cut-ins closer than 25 meters are missed
- ◆ Uncertain performance from 25–50 meters

A Segmented FOV Will Not Give Adjacent Lane False Alarms

- ◆ FOV is partitioned into sub-zones
- ◆ Targets are identified in these sub-zones

◆ Cut-ins are detected

Fine Range Resolution Is Essential

- Motorcycle and car seen as a single target
- ◆ Range measurements may vary, causing intermittent alerts
- ◆ Potential exists for collision with motorcycle

- ◆ Motorcycle and car are detected as separate targets
- ◆ Provides for steady range measurements
- ◆ Alert/no alert condition is stable

Radar Signal and Data Processing: AGC Algorithm Accommodates Large Differences in Target Radar Cross Section

Radar Signal and Data Processing: Algorithm to Determine In-Path Target

Technical Appendix C

FMCW Radar Overview

FMCW Radar Overview: Block Diagram

FMCW Radar Overview: Transmitted and Received Signals, Two Targets, Zero Doppler

FMCW Radar Overview: Two Targets in the Frequency Domain

Mixer Input at Two Points in Time

Mixer Output

 F_T = Transmitted carrier

 F_{R_N} = Reflected signal from near target

 F_{R_F} = Reflected signal from far target

FMCW Forward-Looking Radar: Principles of Operation (1)

Modulation

- Frequency modulated continuous wave (FMCW)
- Positive and negative modulation slopes, 2 ms per slope

FMCW Forward-Looking Radar: Principles of Operation (2)

- ◆ Modulation (cont'd)
 - Radar returns are down-converted with transmitted signal in mixer
 - Frequency passed after down-conversion <100 KHz
- Antenna
 - Scans field-of-view (FOV)
 - Beamwidth <3°</p>

FMCW Forward-Looking Radar: Principles of Operation (3)

Detection

- Radar returns must exceed an amplitude threshold in order to be processed as a signal; threshold is adaptive with respect to average noise
- Radar signal returns must exceed threshold on consecutive slopes in one scan direction before being recorded as a possible target

FMCW Forward-Looking Radar: Principles of Operation (4)

◆ Target of interest

- Detected targets processed by "target selection" algorithm to determine which are in the path of radar car
- Target of interest defined to be nearest in-path target